A Posteriori Bounds in the Numerical Solution of Mildly Nonlinear Parabolic Equations*

By Alfred Carasso

Abstract

We derive a posteriori bounds for $(V-\hat{V})$ and its difference quotient $\left(V-\hat{V}_{x}\right.$, where V and \hat{V} are, respectively, the exact and computed solution of a difference approximation to a mildly nonlinear parabolic initial boundary problem, with a known steadystate solution. It is assumed that the computation is over a long interval of time. The estimates are valid for a class of difference approximations, which includes the CrankNicolson method, and are of the same magnitude for both $(V-\hat{V})$ and $\left(V-\hat{V}_{x}\right.$.

1. Introduction. Let \mathbb{R} be the strip $\{(x, t) \mid 0<x<1, t>0\}$ in the (x, t) plane and consider the mixed problem

$$
\begin{align*}
u_{t} & =\left[a(x, t) u_{x}\right]_{x}+b(x, t) u_{x}-f(x, t, u), \quad(x, t) \in R, \\
u(x, 0) & =\chi(x), \quad 0 \leqq x \leqq 1, \tag{1.1}\\
u(0, t) & =\varphi_{1}(t), \quad u(1, t)=\varphi_{2}(t), \quad t>0 .
\end{align*}
$$

We assume that $a(x, t), b(x, t)$ are "smooth" bounded functions on $\bar{\Omega}$, with $a(x, t) \geqq a_{0}>0$, and that $f(x, t, w)$ is, at least once, continuously differentiable on $\mathcal{Q} X\{-\infty<w<+\infty\}$ with $\partial f / \partial w \geqq 0$. Moreover, $\partial f / \partial w$ is to remain bounded if w stays bounded. The coefficients, data, and f are assumed such as to assure the existence and uniqueness of a solution $u(x, t)$, four times boundedly differentiable in $\overline{\mathscr{A}}$, and converging to a steady state value $u^{\infty}(x)$, as $t \rightarrow \infty$. We assume $u^{\infty}(x)$ is known and that, by means of asymptotic formulae and the like, one can estimate $\left\|u(\cdot, t)-u^{\infty}\right\|_{2}$ as a function of t, for t sufficiently large. The analytical theory for such problems is discussed in Friedman [5].

Several finite-difference methods for the numerical computation of (1.1) have been shown to converge; see for example [4], [6], [8], [10], [3] and their references, and especially [9] for the linear case.

Because of round-off error, and the fact that one may need to use iterative methods at each time step to solve the nonlinear difference equations, only an approximation V^{n} to the exact solution V^{n} of the difference equations can be computed in general. In [3], a "boundary-value" method for (1.1) was analyzed. This method yields an a posteriori estimate for $V-\hat{V}$ by simply computing residuals. In the present note we make use of some of the results in [2] and [3] to derive such an estimate for a class of stable "marching" procedures for (1.1). Unlike the situation in [3], however, the estimate will involve bounds on the derivatives of u. It is interesting that the estimate is of the same magnitude for both $(V-\hat{V})$ and its difference quotient $\underline{(V-\hat{V})_{x}}$.

Received September 18, 1969.
AMS 1969 subject classifications. Primary 6568, 6580.
Key words and phrases. Parabolic equations, Crank-Nicolson method, limiting steady state, computations over long times.

* Supported by NSF Grant GP-13024.

2. Notation. Let \mathcal{R}_{T} be the rectangle $\{(x, t) \mid 0<x<1,0<t<T\}$ and let M and N be positive integers. Let $\Delta x=1 /(M+1), \Delta t=T /(N+1)$, and introduce a mesh over $\overline{\mathcal{A}}_{T}$ by means of the lines $x=k \Delta x, k=0,1, \cdots, M+1, t=n \Delta t$, $n=0,1, \cdots, N+1$. Let v_{k}^{n} denote $v(k \Delta x, n \Delta t)$. Define V^{n} to be the M-component vector

$$
\begin{equation*}
V^{n}=\left\{v_{1}^{n}, v_{2}^{n}, \cdots, v_{M}^{n}\right\}^{T} \tag{2.1}
\end{equation*}
$$

and let V be the "block" vector of $M N$ components

$$
\begin{equation*}
V=\left\{V^{1}, V^{2}, \cdots, V^{N}\right\}^{T} \tag{2.2}
\end{equation*}
$$

Although we will be dealing with real-valued mesh functions, it is convenient to define scalar products and norms for complex vectors. For any two M vectors V^{n}, W^{n} let

$$
\begin{equation*}
\left\langle V^{n}, W^{n}\right\rangle=\Delta x \sum_{k=1}^{M} v_{k}^{n} \bar{W}_{k}^{n} \tag{2.3}
\end{equation*}
$$

and let

$$
\begin{equation*}
\left\|V^{n}\right\|_{2}^{2}=\left\langle V^{n}, V^{n}\right\rangle \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
\left\|V_{x}^{n}\right\|_{2}^{2}=\Delta x \sum_{k=0}^{M} \frac{\left|v_{k+1}^{n}-v_{k}^{n}\right|^{2}}{\Delta x^{2}} \tag{2.5}
\end{equation*}
$$

where $v_{0}^{\mathrm{n}}, v_{M+1}^{n}$ are defined to be zero.
For block vectors V, W define

$$
\begin{equation*}
(V, W)=\Delta t \sum_{n=1}^{N}\left\langle V^{n}, W^{n}\right\rangle \tag{2.6}
\end{equation*}
$$

and let

$$
\begin{align*}
\|V\|_{2}^{2} & =(V, V) \tag{2.7}\\
\left\|V_{x}\right\|_{2}^{2} & =\Delta t \sum_{n=1}^{N}\left\|V_{x}^{n}\right\|_{2}^{2} \tag{2.8}
\end{align*}
$$

Finally, for a square matrix A, define $\|A\|$ in terms of vector norms, i.e., as

$$
\begin{equation*}
\|A\|=\operatorname{Sup}_{\|X\|=1}\|A X\| \tag{2.9}
\end{equation*}
$$

the supremum being taken over all complex vectors.
3. Difference Approximations to (1.1). Let U^{n} be the M-vector consisting of the solution to (1.1) evaluated at the interior mesh points of the line $t=n \Delta t$ and let V^{n} be the corresponding exact solution of the difference equations used to approximate (1.1). Define $E^{n}=V^{n}-U^{n}$. We will consider the class of marching schemes which lead to a priori estimates of the form

$$
\begin{equation*}
\left\{\left\|E^{n}\right\|_{2}^{2}+\left\|E_{x}^{n}\right\|_{2}^{2}\right\}^{1 / 2} \leqq K(T)\left(\Delta t^{r+1}+\Delta x^{s+1}\right), \quad n \Delta t \leqq T \tag{3.1}
\end{equation*}
$$

where r and s are positive integers and $K(T)$ is known. An example of a difference
scheme for (1.1) satisfying (3.1) with $r=s=1$, is the Crank-Nicolson version analyzed in [8]. In general $K(T)$ will involve bounds on a, b, f, u and their derivatives, as well as a growth factor. The reason for the latter is that, even if the exact solution to (1.1) decays asymptotically to a steady state, the exact solution of a stable, consistent, difference approximation may grow exponentially as $n \Delta t \rightarrow \infty, \Delta t$ fixed. Hence, we cannot expect $K(T)$ to remain bounded as $T \rightarrow \infty$, in general. We remark, however, that in [7], Kreiss and Widlund have shown how to construct schemes (for linear time-dependent problems with periodic boundary conditions) which preserve the asymptotic behavior of $u(x, t)$ provided $|b| \Delta t / \Delta x<1$. In the following we will derive bounds for $\|\hat{V}-V\|_{2}$ and $\left\|\hat{V}_{x}-V_{x}\right\|_{2}$ for computations of (1.1) up to some "large" but fixed time T. These bounds will depend on $K(T)$.

We begin by deriving new finite-difference equations for the exact solution $\left\{V^{n}\right\}$ of a difference scheme used to approximate (1.1). Since $V^{n}=U^{n}+E^{n}$, we have

$$
\begin{align*}
\frac{v_{k}^{n+1}-v_{k}^{n-1}}{2 \Delta t} & =\frac{u_{k}^{n+1}-u_{k}^{n-1}}{2 \Delta t}+\frac{\epsilon_{k}^{n+1}-\epsilon_{k}^{n-1}}{2 \Delta t} \tag{3.2}\\
& =\left(\frac{\partial u}{\partial t}\right)_{k}^{n}+\frac{\epsilon_{k}^{n+1}-\epsilon_{k}^{n-1}}{2 \Delta t}+\frac{\Delta t^{2}}{6} \overline{\left(u_{t t t}\right)_{k}}
\end{align*}
$$

where " ψ " represents a mean value of ψ called for by Taylor's theorem. From (1.1) we have

$$
\begin{align*}
\left(\frac{\partial u}{\partial t}\right)_{k}^{n}+\frac{\Delta t^{2}}{6} \overline{\left(u_{t t t}\right)_{k}}= & \frac{a_{k+1 / 2}^{n}\left(u_{k+1}^{n}-u_{k}^{n}\right)-a_{k-1 / 2}^{n}\left(u_{k}^{n}-u_{k-1}^{n}\right)}{\Delta x^{2}} \tag{3.3}\\
& +b_{k}^{n} \frac{\left(u_{k+1}^{n}-u_{k-1}^{n}\right)}{2 \Delta x}-f\left(k \Delta x, n \Delta t, u_{k}^{n}\right)+\tau_{k}^{n}
\end{align*}
$$

where

$$
\begin{align*}
\tau_{k}^{n}= & \frac{\Delta t^{2}}{6} \overline{\left(u_{t t}\right)_{k}} \\
& -\Delta x^{2}\left\{\frac{\left(u_{x}\right)_{k}^{n} \overline{\left(a_{x x x}^{n}\right)}}{3}+\frac{\left(u_{x x} \overline{n_{k}} \overline{\left(a_{x x}^{n}\right)}\right.}{2}+\frac{\left(u_{x x x}\right)_{k}^{n} \overline{\left(a_{x}^{n}\right)}}{6}+\frac{\overline{\left(a^{n} u_{x x x}^{n}\right)}}{12}+b_{k}^{n} \overline{\left(u_{x x x}^{n}\right)}\right\} . \tag{3.4}
\end{align*}
$$

From (3.2) and (3.3) we have

$$
\begin{align*}
\frac{\left(v_{k}^{n+1}-v_{k}^{n-1}\right)}{2 \Delta t}= & \frac{a_{k+1 / 2}^{n}\left(v_{k+1}^{n}-v_{k}^{n}\right)-a_{k-1 / 2}^{n}\left(v_{k}^{n}-v_{k-1}^{n}\right)}{\Delta x^{2}} \\
& +\frac{b_{k}^{n}\left(v_{k+1}^{n}-v_{k-1}^{n}\right)}{2 \Delta x}-f\left(k \Delta x, n \Delta t, u_{k}^{n}\right) \\
& +\frac{\epsilon_{k}^{n+1}-\epsilon_{k}^{n-1}}{2 \Delta t}-b_{k}^{n} \frac{\left(\epsilon_{k+1}^{n}-\epsilon_{k-1}^{n}\right)}{2 \Delta x} \tag{3.5}\\
& -\frac{\left\{a_{k+1 / 2}^{n}\left(\epsilon_{k+1}^{n}-\epsilon_{k}^{n}\right)-a_{k-1 / 2}^{n}\left(\epsilon_{k}^{n}-\epsilon_{k-1}^{n}\right)\right\}}{\Delta x^{2}}+\tau_{k}^{n} \\
& k=1, \cdots, M, \quad n=1,2, \cdots,
\end{align*}
$$

with the initial boundary data

$$
\begin{array}{ll}
v_{k}^{0}=\chi(k \Delta x), & k=1, \cdots, M, \tag{3.6}\\
v_{0}^{n}=\varphi_{1}(n \Delta t), & v_{M+1}^{n}=\varphi_{2}(n \Delta t), \quad n=1,2, \cdots .
\end{array}
$$

With $T=(N+1) \Delta t$ we now consider the system formed by equations (3.5) for $n=1,2, \cdots, N$. It is convenient to write this system in matrix-vector notation.

Let L^{n} and B^{n} be the tridiagonal $M \times M$ matrices defined by

$$
\begin{align*}
L^{n} & =\frac{1}{\Delta x^{2}}\left[\begin{array}{cccc}
\left(a_{1+1 / 2}^{n}+a_{1 / 2}^{n}\right) & & -a_{1+1 / 2}^{n} & \mathrm{O} \\
-a_{1+1 / 2}^{n} & \ddots & \ddots \\
\ddots & \ddots & -a_{M-1 / 2}^{n} \\
\ddots & & & \\
\mathrm{O} & -a_{M-1 / 2}^{n} & \left(a_{M+1 / 2}^{n}+a_{M-1 / 2}^{n}\right)
\end{array}\right], \tag{3.7}\\
B^{n} & =\frac{1}{2 \Delta x}\left[\begin{array}{ccccc}
0 & & -b_{1}^{n} & & \mathrm{O} \\
b_{2}^{n} \cdot & \cdot & \ddots & \\
\cdot & \cdot & & \ddots & \\
\mathrm{O} & \cdot & b_{M}^{n} & 0 & -b_{M-1}^{n}
\end{array}\right] \tag{3.8}
\end{align*}
$$

and define the M-vectors $\tau^{n}, F^{n}(U)$, and G^{n} by

$$
\begin{align*}
\tau^{n} & =\left\{\tau_{1}^{n}, \tau_{2}^{n}, \cdots, \tau_{M}^{n}\right\}^{T}, \tag{3.9}\\
F^{n}(U) & =\left\{f_{1}^{n}(u), f_{2}^{n}(u), \cdots, f_{M}^{n}(u)\right\}^{T}, \tag{3.10}
\end{align*}
$$

where

$$
f_{k}^{n}(u) \equiv f\left(k \Delta x, n \Delta t, u_{k}^{n}\right)
$$

and

$$
\begin{equation*}
G^{n}=\frac{1}{\Delta x^{2}}\left\{\left(a_{1+1 / 2}^{n}-\frac{1}{2} \Delta x b_{1}^{n}\right) \varphi_{1}(n \Delta t), 0,0, \cdots, 0,\left(a_{M+1 / 2}^{n}+\frac{1}{2} \Delta x b_{M}^{n}\right) \varphi_{2}(n \Delta t)\right\}^{T} . \tag{3.11}
\end{equation*}
$$

We may then write (3.5), (3.6) as

$$
\begin{align*}
\frac{V^{n+1}-V^{n-1}}{2 \Delta t}= & -L^{n} V^{n}-B^{n} V^{n}-F^{n}(U)+\tau^{n}+G^{n} \tag{3.12}\\
& +\frac{E^{n+1}-E^{n-1}}{2 \Delta t}+B^{n} E^{n}+L^{n} E^{n}, \quad n=1,2, \cdots, N .
\end{align*}
$$

Some further definitions will enable us to write (3.12) in "block" form. Define the $M N \times M N$ block tridiagonal matrix P by (with $\sigma=1 / 2 \Delta t$)

$$
P=\left[\begin{array}{ccccc}
\left(L^{1}+B^{1}\right) & \cdot & & \sigma I & \tag{3.13}\\
-\sigma I . & & \cdot & & \\
& \cdot & & \cdot & \\
0 & \cdot & -\sigma I & \left(L^{N}+B^{N}\right) & { }_{\sigma I}
\end{array}\right]
$$

For any real block vector ξ define the $M \times M$ diagonal matrix $C^{m}(\xi)$ by

$$
C^{n}(\xi)=\left[\begin{array}{cc}
f_{w}\left(\Delta x, n \Delta t, \xi_{1}^{n}\right) & \mathrm{O} \tag{3.14}\\
\ddots & \\
O & f_{w}\left(\Delta x, n \Delta t, \xi_{M}^{n}\right)
\end{array}\right]
$$

and let $C(\xi)$ be the block matrix

$$
C(\xi)=\left[\begin{array}{ccc}
C^{1}(\xi) & & 0 \tag{3.15}\\
& \ddots & \\
\bigcirc & & C^{N}(\xi)
\end{array}\right]
$$

Finally, define the block vectors F, G^{*}, H, and τ by
(3.16) $F=\left\{F^{1}, F^{2}, \cdots, F^{N}\right\}^{T}$,
(3.17) $G^{*}=\left\{G^{1}+\frac{V^{0}}{2 \Delta t}, G^{2}, \cdots, G^{N}-\frac{V^{N+1}}{2 \Delta t}\right\}^{T}$,
(3.18) $H=\left\{\frac{E^{2}-E^{0}}{2 \Delta t}+\left(L^{1}+B^{1}\right) E^{1}, \cdots \cdots, \frac{E^{N+1}-E^{N-1}}{2 \Delta t}+\left(L^{N}+B^{N}\right) E^{N}\right\}^{T}$,
(3.19) $\tau=\left\{\tau^{1}, \tau^{2}, \cdots, \tau^{N}\right\}^{T}$.

With this notation we have from (3.12)

$$
\begin{equation*}
P V=-F(U)+G^{*}+\tau+H \tag{3.20}
\end{equation*}
$$

Lemma 1. Let D be a diagonal matrix of order $M N$ with nonnegative real entries and let

$$
\begin{equation*}
Q=P+D \tag{3.21}
\end{equation*}
$$

Let $b(x, t)$ in (1.1) satisfy

$$
\begin{equation*}
\left|\frac{\partial b}{\partial x}\right| \leqq b_{1}<2 a_{0} \pi^{2}, \quad \forall(x, t) \in \bar{\Omega}_{T} \tag{3.22}
\end{equation*}
$$

Fix $\epsilon>0$ so that $a_{0} \pi^{2}-b_{1} / 2-\epsilon \geqq \omega>0$. If $\Delta x \leqq\left(12 \epsilon / a_{0} \pi^{4}\right)^{1 / 2}, Q^{-1}$ exists and

$$
\begin{equation*}
\operatorname{Sup}_{x \text { real, }\|x\|_{2} \leqq 1}\left\|Q^{-1} X\right\|_{2} \leqq \frac{1}{\omega} . \tag{3.23}
\end{equation*}
$$

Moreover, if $Q W=Z$, where Z is real we have

$$
\begin{equation*}
\left\|W_{x}\right\|_{2} \leqq\left(\frac{2 \omega+b_{1}}{2 a_{0} \omega^{2}}\right)^{1 / 2}\|Z\|_{2} \tag{3.24}
\end{equation*}
$$

Proof. See [3, Lemma 1].
Remark. If

$$
D=\left[\begin{array}{llll}
\Lambda & & & O \\
& \Lambda & & \\
& & \ddots & \\
\bigcirc & & \Lambda
\end{array}\right]
$$

where Λ is a diagonal $M \times M$ matrix with nonnegative real entries, and if $a(x, t)$, $b(x, t)$ are independent of t, Q^{-1} exists and remains bounded for all sufficiently small Δx independently of hypothesis (3.22). This observation is relevant to the case where (1.1) is linear with time independent coefficients, i.e., $a=a(x), b=b(x)$, and $f(x, t, u)=c(x) u+h(x, t)$ with $c(x) \geqq 0$. See [1, Lemma 1] and [2, Lemma 4.2].
4. A Posteriori Bounds. For each $n=1,2, \cdots, N+1$, let \hat{V}^{n} be the computed solution at $t=n \Delta t$, of the difference equations used to approximate (1.1) and consider the block vector

$$
\begin{equation*}
\hat{V}=\left\{\hat{V}^{1}, \hat{V}^{2}, \cdots, \hat{V}^{N}\right\}^{T} \tag{4.1}
\end{equation*}
$$

Define \hat{G}^{*} to be the block vector obtained from G^{*} when V^{N+1} is replaced by \hat{V}^{N+1}. Compute the block vector R given by

$$
\begin{equation*}
R=P \hat{V}+F(\hat{V})-\hat{G}^{*} \tag{4.2}
\end{equation*}
$$

Subtracting (4.2) from (3.20) we have

$$
\begin{align*}
P(V-\hat{V}) & =-F(U)+F(\hat{V})+\left(G^{*}-\hat{G}^{*}\right)+\tau+H-R \\
& =-F(U)+F(V)+F(\hat{V})-F(V)+\left(G^{*}-\hat{G}^{*}\right)+\tau+H-R \tag{4.3}\\
& =-C(\xi)(U-V)-C(\Psi)(V-\hat{V})+\left(G^{*}-\hat{G}^{*}\right)+\tau+H-R
\end{align*}
$$

for some intermediate real block vectors ξ and Ψ on using the mean value theorem. Hence,

$$
\begin{equation*}
[P+C(\Psi)](V-\hat{V})=\tau+H-R+\left(G^{*}-\hat{G}^{*}\right)-C(\xi)(U-V) \tag{4.4}
\end{equation*}
$$

Since $f_{w} \geqq 0, C(\Psi)$ is a diagonal matrix with nonnegative real entries. By Lemma 1, we may estimate $\|V-\hat{V}\|_{2},\left\|V_{x}-\hat{V}_{x}\right\|_{2}$, provided we can estimate the terms other than R on the right-hand side of (4.4). We will make use of the a priori estimate (3.1).

Let a^{*}, b^{*} be upper bounds for $a(x, t)$ and $|b(x, t)|$, respectively, in $\bar{\Omega}_{T}$.
Since

$$
\left(L^{n} E^{n}\right)_{k}=\frac{1}{\Delta x^{2}} a_{k-1 / 2}^{n}\left(\epsilon_{k}^{n}-\epsilon_{k-1}^{n}\right)+\frac{1}{\Delta x^{2}} a_{k+1 / 2}^{n}\left(\epsilon_{k}^{n}-\epsilon_{k+1}^{n}\right)
$$

we have

$$
\begin{align*}
\left\|L^{n} E^{n}\right\|_{2} & \leqq \frac{a^{*}}{\Delta x}\left\{\Delta x \sum_{k=1}^{M} \frac{\left(\epsilon_{k}^{n}-\epsilon_{k-1}^{n}\right)^{2}}{\Delta x^{2}}\right\}^{1 / 2}+\frac{a^{*}}{\Delta x}\left\{\Delta x \sum_{k=1}^{M} \frac{\left(\epsilon_{k+1}^{n}-\epsilon_{k}^{n}\right)^{2}}{\Delta x^{2}}\right\}^{1 / 2} \tag{4.5}\\
& \leqq \frac{2 a^{*}}{\Delta x}\left\|E_{x}^{n}\right\|_{2} \leqq 2 a^{*} K(T)\left(\frac{\Delta t^{r+1}}{\Delta x}+\Delta x^{s}\right) .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left\|B^{n} E^{n}\right\|_{2} \leqq b^{*} K(T)\left(\Delta x^{s+1}+\Delta t^{r+1}\right) \tag{4.6}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\frac{1}{2 \Delta t}\left\|E^{n+1}-E^{n-1}\right\|_{2} \leqq K(T)\left(\Delta t^{r}+\frac{\Delta x^{s+1}}{\Delta t}\right) \tag{4.7}
\end{equation*}
$$

Hence, we can estimate $\|H\|_{2}$ by

$$
\begin{equation*}
\|H\|_{2} \leqq T^{1 / 2} K(T)\left(\Delta t^{r+1}+\Delta x^{s+1}\right)\left(b^{*}+\frac{2 a^{*}}{\Delta t}+\frac{1}{\Delta t}\right) \tag{4.8}
\end{equation*}
$$

We estimate $\left\|G^{*}-\hat{G}^{*}\right\|_{2}$ as follows: First,

$$
\begin{equation*}
\left\|G^{*}-\hat{G}^{*}\right\|_{2}=\frac{1}{2 \Delta t^{1 / 2}}\left\|\hat{V}^{N+1}-V^{N+1}\right\|_{2} \tag{4.9}
\end{equation*}
$$

If U^{∞} is the M-vector consisting of the steady state solution, we have from (3.1)

$$
\left\|G^{*}-\hat{G}^{*}\right\|_{2} \leqq \frac{1}{2 \Delta t^{1 / 2}}\left\{\left\|\hat{V}^{N+1}-U^{\infty}\right\|_{2}+\left\|U^{N+1}-U^{\infty}\right\|_{2}\right\}
$$

$$
\begin{equation*}
+K(T)\left(\frac{\Delta t^{r+1}+\Delta x^{s+1}}{2 \Delta t^{1 / 2}}\right) \tag{4.10}
\end{equation*}
$$

Since we assume U^{∞} is known, and that $\left\{u(x, t)-u^{\infty}(x)\right\}$ can be estimated as a function of t, the right-hand side of (4.10) can be estimated.

We may estimate $\|C(\xi)\|_{2}$ by using the a priori estimate (3.1), since ξ is an intermediate value, and since $f_{w}(x, t, w)$ is bounded if w is bounded. This means we can find a constant K_{1} such that

$$
\begin{equation*}
\|C(\xi)(V-U)\|_{2} \leqq K_{1} K(T) T^{1 / 2}\left(\Delta t^{r+1}+\Delta x^{s+1}\right) \tag{4.11}
\end{equation*}
$$

Finally, we assume a bound is known for the derivatives of u occurring in (3.4) so that
(4.12) $\quad\|\tau\|_{2} \leqq T^{1 / 2} K_{2}\left(\Delta t^{2}+\Delta x^{2}\right)$, for some constant K_{2}.

Using Lemma 1 and (4.8), (4.10), (4.11) and (4.12) we have
Theorem. Let $b(x, t)$ in (1.1) satisfy $|\partial b / \partial x| \leqq b_{1}<2 a_{0} \pi^{2}$ and fix $\in>0$ so that $a_{0} \pi^{2}-\frac{1}{2} b_{1}-\epsilon \geqq \omega>0$. Let

$$
\begin{equation*}
\Delta x \leqq\left(\frac{12 \epsilon}{a_{0} \pi^{4}}\right)^{1 / 2} \tag{4.13}
\end{equation*}
$$

Let $V=\left\{V^{n}\right\}$ and $\hat{V}=\left\{\hat{V}^{n}\right\}$ be, respectively, the exact and computed solution of a difference approximation for (1.1) satisfying (3.1). Finally, let R be defined by (4.2). Then

$$
\begin{align*}
\|V-\hat{V}\|_{2} \leqq & \frac{1}{2 \omega \Delta t^{1 / 2}}\left\{\left\|\hat{V}^{N+1}-U^{\infty}\right\|_{2}+\left\|U^{N+1}-U^{\infty}\right\|_{2}\right\}+\frac{\|R\|_{2}}{\omega} \\
& +\frac{T^{1 / 2} K_{2}\left(\Delta t^{2}+\Delta x^{2}\right)}{\omega} \tag{4.14}\\
& +\frac{T^{1 / 2} K(T)\left(\Delta t^{r+1}+\Delta x^{s+1}\right)}{\omega}\left\{K_{1}+\frac{1}{2(T \Delta t)^{1 / 2}}+b^{*}+\frac{2 a^{*}}{\Delta x}+\frac{1}{\Delta t}\right\}
\end{align*}
$$

and
$\left\|V_{x}-\hat{V}_{x}\right\|_{2}$
$\leqq\left(\frac{2 \omega+b_{1}}{2 a_{0} \omega^{2}}\right)^{1 / 2}\left\{\frac{1}{2 \Delta t^{1 / 2}}\left(\left\|\hat{V}^{N+1}-U^{\infty}\right\|_{2}+\left\|U^{N+1}-U^{\infty}\right\|_{2}\right)\right.$
(4.15)

$$
\begin{array}{r}
+\|R\|_{2}+K_{2} T^{1 / 2}\left(\Delta t^{2}+\Delta x^{2}\right)+K(T) T^{1 / 2}\left(\Delta t^{r+1}+\Delta x^{\rho+1}\right) \\
\left.\cdot\left(K_{1}+\frac{1}{2(\Delta t T)^{1 / 2}}+b^{*}+\frac{2 a^{*}}{\Delta x}+\frac{1}{\Delta t}\right)\right\}
\end{array}
$$

The University of New Mexico
Albuquerque, New Mexico 87106

1. A. Carasso, "Finite-difference methods and the eigenvalue problem for nonselfadjoint Sturm-Liouville operators," Math. Comp., v. 23, 1969, pp. 717-729.
2. A. Carasso \& S. V. Parter, "An analysis of 'boundary-value techniques' for parabolic problems," Math. Comp., v. 24, 1970, pp. 315-340.
3. A. Carasso, "Long range numerical solution of mildly non-linear parabolic equations," Numer. Math. (To appear.)
4. J. Douglas, Jr., A Survey of Numerical Methods for Parabolic Differential Equations, Advances in Computers, vol. 2, Academic Press, New York, 1961, pp. 1-54. MR 25 \#5604.
5. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31 \#6062.
6. F. Jонn, "On integration of parabolic equations by difference methods. I: Linear and quasi-linear equations for the infinite interval," Comm. Pure Appl. Math., v. 5, 1952, pp. 155-211. MR 13, 947.
7. H. O. Kreiss \& O. B. Widlund, Difference Approximations for Initial Value Problems for Partial Differential Equations, Department of Computer Sciences, Report NR 7, Upsala University, 1967.
\rightarrow M. Lees, "Approximate solutions of parabolic equations," J. Soc. Indust. Appl. Math., v. 7, 1959, pp. 167-183. MR 22 \#1092.
8. R. D. Richtmyer \& K. W. Morton, Difference Methods for Initial-Value Problems, 2nd ed., Interscience Tracts in Pure and Appl. Math., no. 4, Interscience, New York, 1967. MR 36 \#3515.
9. O. B. Widlund, "On difference methods for parabolic equations and alternating direction implicit methods for elliptic equations," IBM J. Res. Develop., v. 11, 1967, pp. 239-243. MR 36 \#7356.
