
MATHEMATICS OF COMPUTATION, VOLUME 24, NUMBER 112, OCTOBER 1970 

A Posteriori Bounds in the Numerical Solution of 
Mildly Nonlinear Parabolic Equations* 

By Alfred Carasso 

Abstract. We derive a posteriori bounds for (V - V) and its difference quotient (V - 

where V and V are, respectively, the exact and computed solution of a difference approxi- 
mation to a mildly nonlinear parabolic initial boundary problem, with a known steady- 
state solution. It is assumed that the computation is over a long interval of time. The 
estimates are valid for a class of difference approximations, which includes the Crank- 
Nicolson method, and are of the same magnitude for both (V - V) and (V -). 

1. Introduction. Let a be the strip {(x, t) I 0 < x < 1, t > 0} in the (x, t) plane 
and consider the mixed problem 

=t [a(x, t)u.]. + b(x, t)u. - f(x, t, u), (x, t) E R, 

(1.1) u(x, 0) X(x), o < x I 1, 

U(0, t) = fo(t), u(1, t) = f2(t), t > 0. 

We assume that a(x, t), b(x, 1) are "smooth" bounded functions on :7, with 
a(x, i) ; ao > 0, and that f(x, t, w) is, at least once, continuously differentiable 
on GIX{ - o < w < + o } with Of/Ow > 0. Moreover, af/ow is to remain bounded 
if w stays bounded. The coefficients, data, and f are assumed such as to assure the 
existence and uniqueness of a solution u(x, t), four times boundedly differentiable 
in a, and converging to a steady state value u'(x), as t -a c. We assume u'(x) is 
known and that, by means of asymptotic formulae and the like, one can estimate 
II u( , t) - 1 12 as a function of t, for t sufficiently large. The analytical theory for 
such problems is discussed in Friedman [5]. 

Several finite-difference methods for the numerical computation of (1.1) have 
been shown to converge; see for example [4], [6], [8], [10], [3] and their references, 
and especially [9] for the linear case. 

Because of round-off error, and the fact that one may need to use iterative methods 
at each time step to solve the nonlinear difference equations, only an approximation 
Id to the exact solution V' of the difference equations can be computed in general. 
In [3], a "boundary-value" method for (1.1) was analyzed. This method yields an 
a posteriori estimate for V - v by simply computing residuals. In the present note 
we make use of some of the results in [2] and [3] to derive such an estimate for a 
class of stable "marching" procedures for (1.1). Unlike the situation in [3], however, 
the estimate will involve bounds on the derivatives of u. It is interesting that the 
estimate is of the same magnitude for both (V - 1) and its difference quotient 
(V - 
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2. Notation. Let (RT be the rectangle {(x, t) 0 0 < x < 1, 0 < t < Tj and let 
M and N be positive integers. Let Ax = 1 /(M + 1), At = T/(N + 1), and introduce 
a mesh over (iTby means of the lines x = kAx, k = 0, 1, * , M + 1, I = nAt, 
n = 0, 1, , N + 1. Let v, denote v(kAx, nAt). Define Pn to be the M-component 
vector 

(2.1) V'= V, * * 
T 

and let V be the "block" vector of MN components 

(2.2) V= { V , * *, 

Although we will be dealing with real-valued mesh functions, it is convenient to 
define scalar products and norms for complex vectors. For any two M vectors Vn, 
Wn let 

M 

(2.3) (jn, W ) = AX Vk 
Ka-i 

and let 

(2.4) IIVtI22 = (va, v:. 

Let 

(2.5) ||v2 = AX E |1122 

where vo, vM+1 are defined to be zero. 
For block vectors V, W define 

N 

(2.6) (sV, W) = At >2( V s W) 
n-1 

and let 

(2.7) IIVI2 = (V. V, 

N 

(2.8) 11jjV~j = At ?2 I 2v . 
ni1 

Finally, for a square matrix A, define I A 1I in terms of vector norms, i.e., as 

(2.9) ItAII = Sup IIAXII, 
I I Xl I -1 

the supremum being taken over all complex vectors. 

3. Difference Approximations to (1.1). Let U' be the M-vector consisting of 
the solution to (1.1) evaluated at the interior mesh points of the line t = nAt and 
let P be the corresponding exact solution of the difference equations used to ap- 
proximate (1.1). Define En = r- Un. We will consider the class of marching schemes 
which lead to a priori estimates of the form 

(3.1) {1lEnll2 + tlEnlj}11/2 < K(T)(Atr+l + Axs+l), nAt < T, 

where r and s are positive integers and K(T) is known. An example of a difference 
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scheme for (1.1) satisfying (3.1) with r = s = 1, is the Crank-Nicolson version ana- 
lyzed in [8]. In general K(T) will involve bounds on a, b, f, u and their derivatives, 
as well as a growth factor. The reason for the latter is that, even if the exact solution 
to (1.1) decays asymptotically to a steady state, the exact solution of a stable, con- 
sistent, difference approximation may grow exponentially as nAt A-> o, At fixed. 
Hence, we cannot expect K(T) to remain bounded as T -> c, in general. We remark, 
however, that in [7], Kreiss and Widlund have shown how to construct schemes 
(for linear time-dependent problems with periodic boundary conditions) which 
preserve the asymptotic behavior of u(x, t) provided Ib IAt/Ax < 1. In the following 
we will derive bounds for I If - VI 12 and I If,- V.,II2 for computations of (1.1) 
up to some "large" but fixed time T. These bounds will depend on K(T). 

We begin by deriving new finite-difference equations for the exact solution { P`} 
of a difference scheme used to approximate (1.1). Since P = Um + En, we have 

n+1 n-1 n+i n-1 n+1 n-1 
Vk - Vk Uk - Uk Ek -k 

(3.2) 2At 2At 2At 

'O +1 n-i _____ 

3 (-)+ 2 At + 6 
(utte)k, 

where "p" represents a mean value of i6 called for by Taylor's theorem. From (1.1) 
we have 

(auV At) +-6 (attt =k+112 k+ Uk) - ak 1/2 k - Uk1) 

(3.3) Ot k+ 6(U tt) -k Ax2 

+ b n(kl k k1) - f(kAx, nAt, u ) + Tkn 

2Ax 

where 

n At2 
Trk 

__ 
- Ut t At 

((a + (u ) (a ) + (A + (2 + 

From (3.2) and (3.3) we have 

k - Vk ak+1/2 (k +1 - ) - ak1/2(k - Vk-1) 

2At AX2 

+ bk(vk1 v 2 
1) 

- f(kAx, nat, uk) 

n+_ n-1 n n 
C-k -Ek n(Enk? - 1 k1 

(3.5) + 2\ / (3.5) + ~~~2At - 

k 2Ax 

ak+ 1 /2(Ek +1 - Ek) - ak1/2 (Ek - k1)} n 
AX2 + Tk n 

k =Is@ M. n = 1,9 2, 
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with the initial boundary data 
0 

(3.6) vk = X(kAx), k = 1, 
*.., M, 

VO = (pl(nAt), VM+1 = p2(nAt), n = 1, 2, *.. 

With T = (N + l)At we now consider the system formed by equations (3.5) for 
n = 1, 2, ... , N. It is convenient to write this system in matrix-vector notation. 

Let Ln and Bn be the tridiagonal M X M matrices defined by 

(al +112 + al,2) a'+1/2 0 

(3.7) L 1 2 a1+2 

-aM-1/2 

_0 -am- 1/2 (aM+112 + aM-1/2)-j 

O -bl O n~~~ 

(3.8) Bn = 0 

_O bM ? -bM-1_i 

and define the M-vectors 

rn, 

Fn(U), and Gn by 

nn - { T T2 *** T ,~ 
(3.9) T' 

~= 
{Ti 

, 

T2, ,TM} 
(3.10) F (j) = {fln(u), fn(u), * * *,(U) 

(3.10) F~~ 2tx~1(~) 0,0 . ,(M 12+~x7)o(~)T 

where 

"- - -L - f(kB-x, nFUt, + +G 

and 

(3.1 1) 

n n n)+ E n"BE+"" n=,,* N 

Gn = A 2 (al~/ - xb PI (ntt), 0, ?s * 0* ? (a M+1/2 + l^xb )V,,(nAt)tr 

We may then write (3.5), (3.6) as 

rn+ - vn= -Ln Vn _ n Vn _ Fn( U) + n +G 

2At - - B 2AG En+I 
_ r_-1 nn 

+ 2At + B Ez+ LnEn, n = 1, 2, *,N. 

Some further definitions will enable us to write (3.12) in "block" form. Define 
the MN X MN block tridiagonal matrix P by (with a = 1/2At) 

(L' + B) * rI 01 

(3.13) P- . . 

[ 0 -cI (LN + BN) oI 
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For any real block vector t define the M X M diagonal matrix CQ() by 

f,(Ax, nAt, S)0 

(3.14) CQ) 

LO fo(Ax, n~t, {M )_ 

and let C(Q) be the block matrix 

cl(o) O 

(3.15) C(O= .(. 

Finally, define the block vectors F, G*, H, and T by 

(3.16) F = {F1, F2, , . v 

(3.17) G*= {G + 2VG2 G' ~} 2At 2~~~At 

(3.18) H = E2- 
E + (L1 + B)E, (LN + BN)eE E 

2At I ~2At +(L+ 

(3.19) r = {Ir, r2, .. TN, T 

With this notation we have from (3.12) 

(3.20) PV = -F(U) + G* + T + H. 

LEMMA 1. Let D be a diagonal matrix of order MN with nonnegative real entries 
and let 

(3.21) Q = P + D. 

Let b(x, t) in (1.1) satisfy 

(3.22) |d ? b, < 2a7r2, V(x, t) R 

Fix E > 0 so that aoir2 - b/2 - e > co > 0. If Ax ? (12e/aoir4)"2, Q' exists and 

(3.23) Sup I!Q-'X!12 - 

X r eal, I 12X112;51 ( 

Moreover, if Q W = Z, where Z is real we have 

(3.24) 11 W.1 1 (2acw 
+ 

)b, 12 

Proof. See [3, Lemma 1]. 
Remark. If 

jA ?.1 
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where A is a diagonal M X M matrix with nonnegative real entries, and if a(x, t), 
b(x, t) are independent of t, Q-' exists and remains bounded for all sufficiently small 
Ax independently of hypothesis (3.22). This observation is relevant to the case where 
(1.1) is linear with time independent coefficients, i.e., a = a(x), b = b(x), 
and f(x, t, u) = c(x)u + h(x, t) with c(x) > 0. See [1, Lemma 1] and [2, Lemma 4.2]. 

4. A Posteriori Bounds. For each n = 1, 2, * * , N + 1, let Vn be the computed 
solution at t = nAt, of the difference equations used to approximate (1.1) and consider 
the block vector 

(4.1) V - {=V, t 2 ... * N} T 

Define !* to be the block vector obtained from G* when VN+l is replaced by gVN+. 

Compute the block vector R given by 

(4.2) R = P V + F()-G*. 

Subtracting (4.2) from (3.20) we have 

P(V- V) =-F(U) + F(Vl) + (G* - G*) + T + H- R 

(4.3) = -FU) + FfV + F~f- FV) + (G*-G*)+ T + H-R 

=-CQt)(U - ) - C(T)( v- P) + (G* - G*) + T + H - R. 

for some intermediate real block vectors t and ' on using the mean value theorem. 
Hence, 

(4.4) [P + C)(V - T+HR+(G* - G*) C()(U- V). 

Since ft, _ 0, C(w) is a diagonal matrix with nonnegative real entries. By Lemma 1, 
we may estimate jj V - V112, |I V| - . 1 12, provided we can estimate the terms other 
than R on the right-hand side of (4.4). We will make use of the a priori estimate (3.1). 

Let a*, b* be upper bounds for a(x, t) and jb(x, t)j, respectively, in sxT. 

Since 

(LnEn)k = -2 ak-1/2(k - 4-0) + A 2 ak+112(A - k+I) 

we have 
__ I ~ (E - )2 L1/2 M~i A ~' (~ n fl21/2 

jjL"E4jj2 < aj- Ax E A + A x. EI + A I' 

(4.5) =/xk1 
A2A - X 

c 2aX JEx2 2a*K()( Ax + Ax) 

Similarly, 

(4.6) IB TnEnt 12 - b*K(T)(Ax8+l + Atr+1) 

and we have 

(4.7) I2v I.Enl - E 11l2 K(T)(/At' + fi (4.7), we can stimat 2At At 

Hence, we can estimate I jHj 12 by 
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(4.8) ItHu12 T112K(T)(At+l + Ax&+')(b* + 2a* + 1) 

We estimate JIG* - d*112 as follows: First, 

1 + 
(4.9) 1 IG* - G11 = 2t 112 -1 VN+1 1 12 

If Us is the M-vector consisting of the steady state solution, we have from (3.1) 

IIG* - G*tI 2At112 {t11t +- u 12 + t1UN+' - u 112} 
(4.10) 

t 

(Atr+" + AX8+l 
+ K(1)( -t12- l~ 

Since we assume U' is known, and that { u(x, t)- u(x)} can be estimated as a 
function of t, the right-hand side of (4.10) can be estimated. 

We may estimate I IC() 112 by using the a priori estimate (3.1), since t is an inter- 
mediate value, and since ft,(x, t, w) is bounded if w is bounded. This means we can 
find a constant K1 such that 

(4.11) | IC()( V - U)I 12 _ K1 K(T) T 12(Atr+l + AX8+'). 

Finally, we assume a bound is known for the derivatives of u occurring in (3.4) so that 

(4.12) 11 r 112 _ T1/2K2(At2 + Ax2), for some constant K2. 

Using Lemma 1 and (4.8), (4.10), (4.11) and (4.12) we have 
THEOREM. Let b(x, t) in (1.1) satisfy Idb/OxI < b, < 2a07r2 and fix E > 0 so that 

a0ir2 - ?bl - > 0. Let 

(4.13) Ax ? (12e4) 

Let V = { V'} and f2 = { fin} be, respectively, the exact and computed solution 
of a difference approximation for (1.1) satisfying (3.1). Finally, let R be defined by (4.2). 
Then 

otN2~ +1 Ul - ~ +1R1 

| | 
i- 

VI 
12? 2 Iw tlv2 U1_ 

1 12 + I U+ U 1 12 } + 
c 

(4.14) + T 1/2K2(At2 + Ax2) 

+ T1/2 K(T)(Atr+l + Ax+8l) )K + ? + 2* + 1a 
t+ 

co ~ L 2(TAt)F/12 Ax At 
and 

Il J' V112 

(2co +b 1/2f 1 + 

_ a~w 2{Atl/2 (I -_ U1 12 + 11 UN+l- UI112) 

(4.15) + hIR112 + K2T1/2(At2 + Ax2) + K(T)Tl/2(Atr+l + Ax+l) 

( + 2(AT1/2 + b* + A_ + 
I 

) 
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